Effect of Tack Coat Material type and Application Rate on the Bond Strength

Louay N. Mohammad, Ph.D.
Louisiana Transportation Research Center
Department of Civil and Environmental Engineering
Louisiana State University

9th Annual Meeting of the Association of Modified Asphalt Producers
February 11 - 13, 2008
Austin, Texas
Outline

- Laboratory Controlled Study
 - Background
 - Objective
 - Scope
 - Methodology
 - Results
 - Conclusions

- NCHRP Project 9-40
 - Update
Acknowledgement

- Louisiana DOTD
- FHWA
- NCHRP
What is a Tack Coat?

- A light application of asphalt, usually asphalt diluted with water. It is used to ensure a bond between the surface being paved and the overlying course.
What is NOT A BOND?

Loss of **ADHESION** and/or **INTERLOCK** at the interface:

Long term pavement **performance** and **durability** can be affected by Debonding as well as Rutting and Cracking.
Common Tack Coat Materials

- Hot AC (AC-20, AC-30, …)
- Emulsified Asphalts (SS-1, SS-1h, CRS-2, CSS-1h, …)
- Cutback Asphalts (RC-70, RC-250, …)
Why is it Used?

- Tack coat is used to bind two pavement layers
- Monolithic structure to withstand/transfer shear stresses from traffic loading
- A strong tack coat binding between the layers is critical to transfer shear stresses into the entire pavement structure
- Lack of bond
 - slippage
 - activate distress mechanisms and rapidly lead to total failure
The Question Is?

1. What Material Should Be Used?
2. What should be the optimum residual application rates?
Objective

- Evaluate the current practice of using tack coats through controlled laboratory shear tests
- Examine the influence of tack coat types, application rates, and test temperatures on interface shear strength
Scope

- 19 mm Mix

Tack Coat Materials

<table>
<thead>
<tr>
<th>Emulsions</th>
<th>CRS-2P</th>
<th>SS-1</th>
<th>CSS-1</th>
<th>SS-1h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt Cements</td>
<td>PG 64-22</td>
<td>PG 76-22M</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Application Rates

<table>
<thead>
<tr>
<th>l/m²</th>
<th>gal/yd²</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.09</td>
<td>0.02</td>
</tr>
<tr>
<td>0.23</td>
<td>0.05</td>
</tr>
<tr>
<td>0.45</td>
<td>0.10</td>
</tr>
<tr>
<td>0.90</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Test Temperatures

<table>
<thead>
<tr>
<th>℃</th>
<th>℉</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>77</td>
</tr>
<tr>
<td>55</td>
<td>131</td>
</tr>
</tbody>
</table>

- Triplicate samples
- 156 samples
Viscosities of Tack Coats at 135°C

<table>
<thead>
<tr>
<th>Tack Coat Type</th>
<th>Viscosity (Pa-s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG 64-22</td>
<td>0.54</td>
</tr>
<tr>
<td>PG 76-22M</td>
<td>1.23</td>
</tr>
<tr>
<td>CRS-2P</td>
<td>2.03</td>
</tr>
<tr>
<td>SS-1</td>
<td>0.26</td>
</tr>
<tr>
<td>CSS-1</td>
<td>0.3</td>
</tr>
<tr>
<td>SS-1h</td>
<td>0.58</td>
</tr>
</tbody>
</table>
Test Procedure

Shear Stress vs. Displacement

Test Temperature 55°C

Displacement (mm)

0 2 4 6 8 10 12

Shear Stress (kpa)

50 lb/min until failure
Data Analysis

- A multiple comparison procedure
 - Fisher’s Least Significant Difference
 - 95% confidence interval
 - Ranking
Variation of Shear Strength Versus Application Rate at 25°C

Shear Strength (kPa)

Application Rate (l/m²), gsy

- PG 64-22
- PG 76-22M
- CRS-2P
- SS-1
- CSS-1
- SS-1h
Variation of Shear Strength Versus Application Rate at 55°C

Shear Strength (kPa)

Application Rate (l/m²)

PG 64-22
PG 76-22M
CRS-2P
SS-1
CSS-1
SS-1h
Maximum Interface Shear Strength

Test Temperature 25°C

Max Shear Strength (Kpa)

Tack Coat Type

PG 64-22
PG 76-22M
CRS-2P
SS-1
CSS-1
SS-1h

0.09 l/m²
0.23 l/m²
Maximum Interface Shear Strength

Test Temperature 55°C

Max Shear Strength (Kpa)

Tack Coat Type

PG 64-22
PG 76-22M
CRS-2P
SS-1
CSS-1
SS-1h

0.09 l/m²
0.23 l/m²
0.45 l/m²
0.90 l/m²
Summary and Conclusions

- Controlled laboratory simple shear tests
 - optimum application rate
- The influence of tack coat types, application rates, and test temperatures on the interface shear strength
- Among the six different tack coat materials used, CRS 2P emulsion was identified as the best performer
- Optimum application rate for CRS 2P emulsion was 0.09 l/m² (0.02 gal/yd²)
- At 25°C, increasing the tack coats application rates generally resulted in a decrease in interface shear strength
- At 55°C, the interface shear strength was not sensitive to the application rate
- CRS 2P at the optimum application rate provided only 83 percent of the monolithic mixture shear strength
- Suggests that the construction of flexible pavements in multiple layers introduces weak zones at these interfaces
NCHRP Project 9-40
Optimization of Tack coat for HMA Placement

- Determine for the various uses of tack coats
 - optimum application methods,
 - equipment type and calibration procedures,
 - application rates, and
 - asphalt binder materials

- Recommend revisions to relevant AASHTO methods and practices related to tack coats
NCHRP Project 9-40
Optimization of Tack coat for HMA Placement

PHASE I
- Task 1 - Conduct a review of the worldwide state of practice
- Task 2 - Design a comprehensive experiment
- Task 3 - Interim Report

PHASE II
- Task 4 - Conduct Experiment Approved In Task 3
- Task 5 - Recommend Test Methods, Criteria, and Construction Guidelines
- Task 6 - Demonstrate the Use of Recommended Test Methods and Construction Guidelines
- Task 7 - Prepare Instructional Materials for a Training Course
- Task 8 - Prepare And Submit Final Report
NCHRP Project 9-40
Factors

- Pavement surface types
 - existing HMA, milled HMA, PCC
- Two tack coat material types:
 - hot AC and emulsion
- Pavement surface coverages by tack coat:
 - 100% and 50%
- Three application rates
 - high, medium, low
- Two surface textures:
 - high and low
- Two permeability levels:
 - high and low
- Two surface cleanliness:
 - clean and dirty/dusty
NCHRP Project 9-40
Field-Laboratory Experiment

[Diagram showing a layout of a pavement research facility with different sections labeled as ALF Testing Area, Lane 4-1 B, Lane 4-2 B, Lane 4-3 B, and other sections for testing and sampling.]
Characterization

Tack Coat Quality

- Tack Coat Quality

Torsion

Tension
Characterization
Interlayer & Tack Coat Quality

- Interlayer Bond Strength
- Tack Coat Quality

Direct Shear
Torsion
Tension

Torsion
Tension
Characterization of Tack Coat Interface Bond Strength Tests

- Candidates
- Direct Shear

Overlay Bond Strength Tester

LTRC Shear Test

NCAT Direct Shear Test
Characterization of Interface Bond Strength
Louisiana Interlayer Shear Strength Tester
Characterization of Tack Coat Film Quality Tests

- Candidate
- Modified ATacker
LSU NO. 1!